Rotorcraft Survivability Advancements through Technology

By

Nikolaos Caravasos

Manager, Military Technology Information, Space, & Defense Systems Boeing, Philadelphia

Presented at the

American Defense Preparedness Association {ADPA}
National Security Industrial Association {NSIA}

on

Enhancing Aircraft Survivability

A Vulnerability Perspective

Monterey, CA

23 October 1997

Nikolaos (Nick) Caravasos

Mr. Caravasos has 36 plus years of aircraft experience with Boeing; 32 plus years in research & development and 4 years in commercial and rotorcraft designs.

Education/Training

University of Pennsylvania West Virginia University

UCLA, Widener, WVU

MS in Applied Management

BS in Engineering

Graduate and Specialty Courses

Employment History

1984 to Present - Manager, Military Technology, Boeing Philadelphia

• Responsible for management of Military Technology IR&D program

• Technical & Management Support to Boeing's fixed wing & rotary wing products

• Manager of numerous Army. Navy, & JTCG/AS contracts

1965 to 1983 - Booling Hemoopters, Staff Specia ist

• Responsible for Survivability on all Boeing Helicopter products

• Marketing support - Supported marketing activities worldwide.

1961 to 1965 - Boeing Helicopters and Boeing Commercial Airplane Senior Engineer

• Responsible for empennage and passenger accommodations designs

Publications/Awards

- Received the highest IR&D score at Boeing Helicopters in 1985, 1986, 1987, & 1988
- Annual lectures on "Aircraft Combat Survivability" and graduate "Helicopter Design"
 Courses at the Naval Post Graduate School, Monterey, California
- Lectured to Greece's NATO forces at KETA, Glyfada, Athens, Greece
- Presented and published numerous technical papers for ADPA, AIAA, AAAA, and AHS

Affiliations

- AIAA Survivability Committee Chairman from 1992 to 1994
- Member of JTCG/AS Industry Advisory Committee

Outline

Nitrogen Inflated Ballistic Bladder {NIBB}

Features

- Hydrodynamic Ram
- Crashworthiness
- Explosion/Fire Suppression

Status

- Phase I Cube Tests {MIL-T-27422}
- Video {Ballistic & 65-ft Crash Drop Tests}

Conclusions

Thermoplastics Research

Tailboom Contract & IR&D Summary

- Design, Analysis, Fabrication, & Tests
- IR&D Support
- Video

Conclusions

Typical Rotorcraft Fuel System Set-up

Typical Rotorcraft Fuel Cell

NIBB Cube Testing

Cube Raised to 65-ft Height for Drop Test

61.

Drop Test Results

No damage to tank walls, seams, or corners

Bottom View

Damage to NIBB outer wall (This is expected since it is not part of the crashworthiness design)

Results of visual inspection

Rubber plugs inside tank detached from tubes allowing water leakage 4 to 5 seconds after impact

No leakage during post test air inflation test [0.5 psi]

Nitrogen Inflated Ballistic Bladder

Conclusions

Where are we?

- Qualified Concept to Phase I MIL-T-27422 Cube
 - Met Drop Test from 65-ft Height
 - No damage to surrounding structure from hydrodynamic ram
 - Provided self-sealing against 12.7mm tumbled API

Where do we from here?

• Phase II Full Scale Qualification

Program Design Drivers

Thermoplastic Panels Survive Blast Pressures

IR&D Program

COMPARISON OF 20mm TEST RESULTS

IR&D Thermoplastic Support

Fragmentation Pattern

Fabrication - Frames & Longerons

524

Doublers to strengthen frame cut-outs

- LONGERONS
- $\sqrt{}$ Single Tool Two tools would reduce cost to 6 Mhs/Pound
- $\sqrt{}$ High percentage of time in pressure vessel
- $\sqrt{30\%}$ reduction with IR heaters
- FRAMES
- $\sqrt{}$ Most Expensive Part to Make
 - · Stamping channel preforms
 - Co-consolidation
- $\sqrt{\text{C}}$ Channel was fabricated in four 90° sections
 - Hand lay-up then cut to a circular arc
 - Polyimide sheets placed in center of laminate
- $\sqrt{}$ Full C -Channel frame could be fabricated in one step

SKIN

- $\sqrt{}$ Increasing size of tape would speed up winding
 - Increase tape thickness {reduces # of plies}
 - Increase tape width {reduces # of strips per ply}

Fabrication Cost Summary

Component	Comple MH/Lb	ted Part MH	Possible Reduction MH/Lb MH		% Reduction
Longeron Frame Skin	7.5 25.0 2.5	126.0 132.5 43.0	6.0 12.0 2.0	100.8 63.6 34.4	
Adjusted Total	7.8	301.5	5.1	198.8	34.6 34.1

Thermoset vs Thermoplastic Panels

Thermoset Thermoplastic

Source of Data: January 1995 Journal of Advanced Materials

Source of Data: Aviation Applied Technology Directorate {AATD}

Test Matrix

1 CSC IVIACIA									
Specimen	Baseline Stiffness	Ballistic	Ballistic Fatigue	Laser & Repair	Patch Fatigue	Ultimate			
16 -Ply IM7/PEEK {Military Grade}	X	X	X			X			
16 -Ply AS4/PPS { Commercial}	X	X	X			X			
10 -Ply IM7/PEEK {Military Grade}	X	X	X			X			
16 -Ply IM7/PEEK {Military Grade}	X			X	X				
10 -Ply IM7/PEEK {Military Grade}	X			X	X				

NOTES:

 Coupling misalignment limit of 0.55 degrees is produced by 3.3degrees of tailboom displacement

Tailboom displacement requires 890,000 in-lbf torsional load

Conclusion:

Damaged tailboom maintains the tail rotor shaft's misalignment within allowable limits

Conclusions

- 20% estimated weight savings over thermosets
- 25% estimated fabrication cost savings over thermosets
- No autoclave was required
- No fasteners were used between frames, longerons, & skins
- Limited delamination due to 23mm HEI damage
- Laser test level significantly higher than typical threat levels
- Field repair successfully demonstrated
- Met strength & stiffness requirements after 23mm HEI damage
- High temperature environment operation {IM7/PEEK, 250° F wet, 290° F dry}
- Excellent toughness
- Thermoplastics is NOT high risk technology any longer

